
Section B5:  Benchmarking Methods for Time Series  
 
B5.1.  Overview of Temporal Disaggregation of Time Series 
When we have a low frequency time series (e.g., annual), and we want a higher frequency times 
series (e.g., monthly or quarterly), we may apply temporal disaggregation methods to obtain an 
approximation of the desired series. Methods are available in statistical software packages. The 
basic steps in temporal disaggregation are as follows: 
 

1) Determine a low-frequency series 𝑦𝑦 for which a higher-frequency series is desired. 
2) Determine an appropriate preliminary high-frequency series 𝑝𝑝, sometimes called a 

pattern series. The high-frequency movements of 𝑝𝑝 should be similar to the expected 
high-frequency movements of the target series. 

3) Benchmark 𝑝𝑝 to force consistency between 𝑝𝑝 and 𝑦𝑦 at the lower-frequency level (e.g., the 
annual averages or sums). 

 
Various methods of identifying or computing pattern series 𝑝𝑝 are discussed in the statistics 
literature. In the regression-based approaches discussed below, multiple high-frequency series of 
explanatory variables may be used. When we already have a high-frequency series that we wish 
to benchmark to a lower-frequency series, we skip step 1. Step 3 above proceeds as follows: 
 

3a)  Aggregate 𝑝𝑝 to the lower frequency (e.g., average or sum the quarterly values to obtain 
annual values).  

3b)  Compute the differences between the low-frequency values of 𝑝𝑝 and the observed low-
frequency values of 𝑦𝑦. 

3c)  Distribute the differences among the values of 𝑝𝑝, to force consistency with 𝑦𝑦. 
 
 
B5.2.  Types of Temporal Disaggregation Methods 
Various methods involve different ways of distributing the differences (step 3c). Temporal 
disaggregation methods are categorized into (1) mathematical or operations research methods 
and (2) regression-based or statistical methods. 
 
Operations research methods use a single indicator or pattern series for the preliminary high-
frequency series 𝑝𝑝. To distribute the benchmarking adjustments, these methods optimize an 
objective function, subject to the benchmarking constraints. Operations research methods include 
the widely used Denton (1971) methods as well as the Causey-Trager method used at the U.S. 
Census Bureau. 
 
Regression-based or statistical methods often use multiple indicator series to compute the 
preliminary series, and they use an estimated or assumed autocorrelation structure to distribute 
the benchmarking adjustments. Regression-based methods include the Chow-Lin (1971), 
Fernandez (1981), and Litterman (1983) methods. 
 
Some benchmarking techniques are designed to work with stock variables, while others are 
designed to work with flow variables. Stock variables measure, at a specific point in time, a 
quantity that may have accumulated in the past, e.g., volume of natural gas in underground 



storage, total solar electricity generating capacity. Flow variables measure a quantity over an 
interval of time, e.g., natural gas consumption per month, solar electricity generation per year. 
 
B5.3.  Denton Benchmarking Methods 
The Denton benchmarking methods are based on the concept of movement preservation, i.e., the 
benchmarked series 𝜃𝜃 follows the same pattern of movement over time as the preliminary high 
frequency series 𝑝𝑝. There are four basic variants of movement preservation: 
 

1) Additive First Difference Method:  Make the additive corrections (𝜃𝜃𝑡𝑡 − 𝑝𝑝𝑡𝑡) as constant as 
possible over time so that the series 𝜃𝜃 is roughly parallel to 𝑝𝑝.  In this approach, we 
minimize the sum of squared differences of the additive first differences: 

 
 min

𝜃𝜃
[(𝜃𝜃𝑡𝑡 − 𝑝𝑝𝑡𝑡) − (𝜃𝜃𝑡𝑡−1 − 𝑝𝑝𝑡𝑡−1)] = min

𝜃𝜃
[∆(𝜃𝜃𝑡𝑡 − 𝑝𝑝𝑡𝑡)]. (B5.3.1) 

 
The additive first difference method is Denton’s (1971) original method. 
 

2) Additive Second Difference Method:  Make the additive corrections as linear as possible 
by minimizing the sum of squared differences of the additive second differences: 
 

 
 min

𝜃𝜃
{[(𝜃𝜃𝑡𝑡 − 𝑝𝑝𝑡𝑡) − (𝜃𝜃𝑡𝑡−1 − 𝑝𝑝𝑡𝑡−1)] − [(𝜃𝜃𝑡𝑡−1 − 𝑝𝑝𝑡𝑡−1) − (𝜃𝜃𝑡𝑡−2 − 𝑝𝑝𝑡𝑡−2)]} 

= min
𝜃𝜃

[∆2(𝜃𝜃𝑡𝑡 − 𝑝𝑝𝑡𝑡)]. (B5.3.2) 

 
In this method, the additive correction (𝜃𝜃𝑡𝑡 − 𝑝𝑝𝑡𝑡) is close to 2(𝜃𝜃𝑡𝑡−1 − 𝑝𝑝𝑡𝑡−1) −
(𝜃𝜃𝑡𝑡−2 − 𝑝𝑝𝑡𝑡−2), a linear function of the previous two corrections. This method is often 
used for stock variables. 

 
3) Proportional First Difference Method:  Make the multiplicative corrections  𝜃𝜃𝑡𝑡

𝑝𝑝𝑡𝑡
  as 

constant as possible by minimizing the sum of squared differences of the ratios  𝜃𝜃𝑡𝑡
𝑝𝑝𝑡𝑡

: 
 
 min

𝜃𝜃
�𝜃𝜃𝑡𝑡
𝑝𝑝𝑡𝑡
− 𝜃𝜃𝑡𝑡−1

𝑝𝑝𝑡𝑡−1
� = min

𝜃𝜃
�∆ �𝜃𝜃𝑡𝑡

𝑝𝑝𝑡𝑡
��. (B5.3.3) 

 
In this method, 𝜃𝜃𝑡𝑡

𝑝𝑝𝑡𝑡
  is close to  𝜃𝜃𝑡𝑡−1

𝑝𝑝𝑡𝑡−1
.   This method is the most widely used of the Denton 

methods, because it is robust to scale. 
 

4) Proportional Second Difference Method:  Make the multiplicative corrections  𝜃𝜃𝑡𝑡
𝑝𝑝𝑡𝑡

  as 

linear as possible by minimizing the sum of squared second differences of the ratios  𝜃𝜃𝑡𝑡
𝑝𝑝𝑡𝑡

: 
 
 min

𝜃𝜃
��𝜃𝜃𝑡𝑡
𝑝𝑝𝑡𝑡
− 𝜃𝜃𝑡𝑡−1

𝑝𝑝𝑡𝑡−1
� − �𝜃𝜃𝑡𝑡−1

𝑝𝑝𝑡𝑡−1
− 𝜃𝜃𝑡𝑡−2

𝑝𝑝𝑡𝑡−2
�� = min

𝜃𝜃
�∆2 �𝜃𝜃𝑡𝑡

𝑝𝑝𝑡𝑡
��. (B5.3.4) 

 



In this method, 𝜃𝜃𝑡𝑡
𝑝𝑝𝑡𝑡

  is close to 2𝜃𝜃𝑡𝑡−1
𝑝𝑝𝑡𝑡−1

− 𝜃𝜃𝑡𝑡−2
𝑝𝑝𝑡𝑡−2

.   This method is often used for stock variables. 
 
The derivations of the Denton methods are similar, involving the following basic steps: 

i. Write the objective function 𝑓𝑓(𝛉𝛉) and the benchmarking constraints in vector notation. 
ii. Multiply the constraint term by a vector 𝛄𝛄 of Lagrange multipliers, and add it to the 

objective function; the function becomes 𝑓𝑓(𝛉𝛉,𝛄𝛄). 
iii. Differentiate 𝑓𝑓(𝛉𝛉,𝛄𝛄) with respect to 𝛉𝛉 and 𝛄𝛄, and set the derivatives equal to 𝟎𝟎.  
iv. Solve for 𝛉𝛉.  Because 𝑓𝑓(𝛉𝛉, 𝛄𝛄) is quadratic, it can be shown that the solution 𝛉𝛉� is a global 

minimum. 
 
The appendix provides the derivation of the additive first difference method. The original Denton 
methods implicitly incorporate an initial condition, 
 
 𝑝𝑝1 = 𝜃𝜃1. (B5.3.5) 
 
This constraint has been found disadvantageous for many applications, because it can result in a 
spurious movement at the beginning of the benchmarked series. The Denton-Cholette (1984) 
methods remove this initial condition and are generally preferred over the original Denton 
methods. 
 
 
B5.4.  Regression-based Methods 
The regression-based temporal disaggregation methods use the following basic steps: 
 

1) Instead of a single indicator series 𝑝𝑝, we assume we have a 𝑇𝑇 × 𝑘𝑘 matrix 𝐗𝐗 consisting of 
𝑇𝑇 high frequency (HF) observations of 𝑘𝑘 ≥ 1 explanatory variables. We aggregate the 
HF series to the low-frequency (LF) level (e.g, compute annual averages from monthly 
data) to form the 𝑀𝑀 × 𝑘𝑘 matrix 𝐉𝐉𝐉𝐉, where 𝐉𝐉 is an appropriate 𝑀𝑀 × 𝑇𝑇 aggregation matrix. 
(See the appendix for a definition of 𝐉𝐉.) 
 

2) We fit an ordinary (or generalized) least square regression model to the LF series 𝑦𝑦, using 
𝐉𝐉𝐉𝐉 as the matrix of explanatory variables: 
 

 𝐲𝐲 = 𝐉𝐉𝐉𝐉𝛽𝛽 + 𝜺𝜺. (B5.4.1) 
 

3) The main assumption behind the regression-based methods is that the linear relationship 
between the LF series 𝐲𝐲 and 𝐉𝐉𝐉𝐉 also holds between the HF series 𝛉𝛉 and 𝐗𝐗. We form the 
preliminary series by setting 
 

 𝐩𝐩 = 𝐗𝐗𝛽̂𝛽. (B5.4.2) 
 

4) To benchmark the preliminary series, the Chow-Lin method assumes that the true 
additive corrections follow an autoregressive process of order 1 (AR1) with a constant 
correlation coefficient 𝜌𝜌, where |𝜌𝜌| < 1: 
 



 𝑢𝑢𝑡𝑡 = 𝜃𝜃𝑡𝑡 − 𝑝𝑝𝑡𝑡 = 𝜌𝜌𝜌𝜌𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 , (B5.4.3) 
 

where 𝜖𝜖𝑡𝑡 is a normally distributed random error term with variance 𝜎𝜎𝜖𝜖2. 
 

5) Chow and Lin consider the variance-covariance matrix of the vector  𝛉𝛉� − 𝐸𝐸(𝛉𝛉), in terms 
of 𝜌𝜌 and 𝜎𝜎𝜖𝜖2.  They use Lagrange multipliers to minimize the variance of 𝛉𝛉� − 𝐸𝐸(𝛉𝛉), 
subject to the benchmarking constraints.  (The Chow-Lin estimator of 𝛉𝛉 is a Best Linear 
Unbiased Estimator (BLUE)). 
 

6) The solution takes the form  
 

 𝛉𝛉� = 𝐗𝐗𝛽̂𝛽 + 𝚺𝚺𝐉𝐉′(𝐉𝐉𝚺𝚺𝐉𝐉′)−𝟏𝟏�𝐉𝐉𝐉𝐉𝛽̂𝛽 − 𝐲𝐲�, (B5.4.4) 
 

where                    𝚺𝚺 = 𝜎𝜎𝜖𝜖2

1−𝜌𝜌2

⎣
⎢
⎢
⎡ 1         𝜌𝜌
𝜌𝜌        1  ⋯ 𝜌𝜌𝑇𝑇−1

… 𝜌𝜌𝑇𝑇−2
⋮ ⋮

𝜌𝜌𝑇𝑇−1 𝜌𝜌𝑇𝑇−2
⋱   ⋮   
…  1   ⎦

⎥
⎥
⎤
. 

 
Calculating 𝛉𝛉� involves estimating the autoregressive parameter 𝜌𝜌. Chow and Lin suggest an 
iterative approach. Other methods have also been presented in the literature, e.g., Dagum and 
Cholette (2006) developed a method that allows users to specify 𝜌𝜌. The Fernandez and Litterman 
methods, useful for disaggregating stock variables, are similar to the Chow-Lin method, but they 
assume that the additive corrections follow a non-stationary autoregressive process: 

 
 𝑢𝑢𝑡𝑡 = 𝜃𝜃𝑡𝑡 − 𝑝𝑝𝑡𝑡 = 𝜃𝜃𝑡𝑡−1 − 𝑝𝑝𝑡𝑡−1 + 𝑣𝑣𝑡𝑡 , (B5.4.5) 
 
where 𝑣𝑣𝑡𝑡 = 𝜌𝜌𝜌𝜌𝑡𝑡−1 + 𝜖𝜖𝑡𝑡.   
 
B5.5.  Comparing Benchmarking Methods 
The Denton proportional difference methods are generally robust to scale and provide good 
results when one good pattern series is available. They are, however, sensitive to outliers. The 
Chow-Lin method (and the other regression-based methods) assume that the strength of the 
correlation between the LF series holds for the HF series. If the LF series are weakly correlated, 
the regression-based methods don’t preserve movement. The main advantage of the regression-
based methods is that they can incorporate multiple pattern series.  They are also fairly robust to 
outliers. 
 
 
B5.6.  Appendix:  Deriving the Denton First Difference Method 
 
Notation 
Let 𝑀𝑀 represent the number of low-frequency (LF) time periods (e.g., years) in the data series. 
Let 𝐿𝐿 represent the number of high-frequency (HF) periods in each LF period (e.g., for monthly 
data, 𝐿𝐿 = 12). Let 𝑚𝑚 = 1, … ,𝑀𝑀 represent the LF time periods and denote the HF periods in each 
LF period 𝑚𝑚 by 𝑡𝑡𝑚𝑚,1, … , 𝑡𝑡𝑚𝑚,𝐿𝐿. Let 𝑇𝑇 = 𝑀𝑀𝑀𝑀, the total number of HF time periods in the data 
series. 



 
The summing (or averaging) weights 𝑗𝑗𝑚𝑚,𝑡𝑡 form an 𝑀𝑀x𝑇𝑇 matrix 𝐉𝐉: 
 
 

𝐉𝐉 = �

𝑗𝑗11 𝑗𝑗12
𝑗𝑗21 𝑗𝑗22

… 𝑗𝑗1𝑇𝑇
⋯ 𝑗𝑗2𝑇𝑇

⋮ ⋮
𝑗𝑗𝑀𝑀1 𝑗𝑗𝑀𝑀2

⋮ ⋮
⋯ 𝑗𝑗𝑀𝑀𝑀𝑀

�. (B5.6.1) 

 
For example, when benchmarking two years of quarterly data to annual sums, we set 
 
 𝐉𝐉 = �1 1

0 0   1 1
0 0   0 0

1 1   0 0
1 1�. (B5.6.2) 

 
For annual averages of quarterly benchmarked data, 
 
 

𝐉𝐉𝜽𝜽 = �
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𝜃𝜃23
𝜃𝜃24⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡1
4
�𝜃𝜃1𝑙𝑙

4

𝑙𝑙=1

1
4
�𝜃𝜃2𝑙𝑙

4

𝑙𝑙=1 ⎦
⎥
⎥
⎥
⎥
⎤

. (B5.6.3) 

 
The benchmarking constraints are therefore written as 𝐲𝐲 − 𝐉𝐉𝐉𝐉 = 𝟎𝟎. 
 
All of the Denton methods use a single indicator series for the preliminary high-frequency series 
𝑝𝑝.  The indicator series may be a HF series that we’d like to benchmark to a low-frequency series 
or, in the case of temporal disaggregation, a series whose short-term movements we believe to 
correlate with the target HF series. 
 
For each HF time period 𝑡𝑡, let 𝑝𝑝𝑡𝑡 and 𝜃𝜃𝑡𝑡 represent the values of the preliminary and benchmarked 
series, respectively.  Then 
 
 𝑝𝑝𝑡𝑡 = 𝜃𝜃𝑡𝑡 + 𝑒𝑒𝑡𝑡 , (B5.6.4) 
 
where 𝑒𝑒𝑡𝑡 is an error term to be estimated. The benchmarking constraints may be expressed as 
𝐲𝐲 − 𝐉𝐉𝐉𝐉 = 𝟎𝟎 or 
 
 

𝑦𝑦𝑚𝑚 = � 𝑗𝑗𝑡𝑡,𝑚𝑚𝜃𝜃𝑡𝑡

𝑡𝑡𝑚𝑚,𝐿𝐿

𝑡𝑡=𝑡𝑡𝑚𝑚,1

, (B5.6.5) 

 
for 𝑚𝑚 = 1, … ,𝑀𝑀, where 𝑦𝑦𝑚𝑚 is the LF series to which we wish to benchmark the 𝑝𝑝𝑡𝑡 (e.g., 𝑦𝑦𝑚𝑚 may 
represent annual averages), and the 𝑗𝑗𝑡𝑡,𝑚𝑚 are weights (e.g., 1

12
, 1
4

, 1). 
 



To optimize the objective function and solve for the vector 𝛉𝛉, we write the function as a 
quadratic form in matrix notation and add the linear benchmarking constraints with a vector 𝛄𝛄 of 
Lagrange multipliers: 
 
 𝑓𝑓(𝛉𝛉,𝛄𝛄) = (𝛉𝛉 − 𝐩𝐩)′𝐃𝐃′𝐃𝐃(𝛉𝛉 − 𝐩𝐩) − 2𝛄𝛄′(𝐲𝐲 − 𝐉𝐉𝐉𝐉), (B5.6.6) 
 
where the matrix 𝐃𝐃 is the first-difference operator matrix of order 𝑇𝑇: 
 
 

𝑫𝑫 = �
   1
−1
    0
    ⋮

  
  0
  1
−1
  ⋮

  0
  0
  1
   ⋮

  
⋯
…
…

  ⋱
�. (B5.6.7) 

 
The matrix 𝐃𝐃′𝐃𝐃 is symmetric, and the factor 2 in the second term of 𝑓𝑓(𝛉𝛉,𝛄𝛄) is applied for 
computational convenience. We compute partial derivatives of 𝑓𝑓(𝜽𝜽,𝜸𝜸) with respect to 𝜽𝜽 and 𝜸𝜸 
and set them equal to 0: 
 
 𝜕𝜕

𝜕𝜕𝛉𝛉
𝑓𝑓(𝛉𝛉,𝛄𝛄) = 2𝐃𝐃′𝐃𝐃𝐃𝐃 − 2𝐃𝐃′𝐃𝐃𝐃𝐃 + 2𝐉𝐉′𝛄𝛄 = 𝟎𝟎 

⇒ 𝐃𝐃′𝐃𝐃𝐃𝐃 + 𝐉𝐉′𝛄𝛄 = 𝐃𝐃′𝐃𝐃𝐃𝐃. 
(B5.6.8) 

 
Similarly, 
 
 𝜕𝜕

𝜕𝜕𝛄𝛄
𝑓𝑓(𝛉𝛉, 𝛄𝛄) = 𝟐𝟐𝟐𝟐𝟐𝟐 − 2𝐲𝐲 = 𝟎𝟎 

⇒ 𝐉𝐉𝐉𝐉 = 𝐉𝐉𝐉𝐉 + (𝐲𝐲 − 𝐉𝐉𝐉𝐉). 
(B5.6.9) 

 
The equations  
 
 𝐃𝐃′𝐃𝐃𝐃𝐃 + 𝐉𝐉′𝛄𝛄 = 𝐃𝐃′𝐃𝐃𝐃𝐃     and    𝐉𝐉𝐉𝐉 = 𝐉𝐉𝐉𝐉 + (𝐲𝐲 − 𝐉𝐉𝐉𝐉) (B5.6.10) 
 
can be written in partitioned matrix form as 
 
 �𝐃𝐃

′𝐃𝐃 𝐉𝐉′
𝐉𝐉 𝟎𝟎� �

𝛉𝛉
𝛄𝛄� = �𝐃𝐃

′𝐃𝐃 𝟎𝟎
𝐉𝐉 𝐈𝐈� �

𝐩𝐩
(𝐲𝐲 − 𝐉𝐉𝐉𝐉)�, (B5.6.11) 

 
which gives the solution 
 
 

�𝛉𝛉
�
𝛄𝛄�� = �𝐃𝐃

′𝐃𝐃 𝐉𝐉′
𝐉𝐉 𝟎𝟎�

−𝟏𝟏
�𝐃𝐃

′𝐃𝐃 𝟎𝟎
𝐉𝐉 𝐈𝐈� �

𝐩𝐩
(𝐲𝐲 − 𝐉𝐉𝐉𝐉)�. (B5.6.12) 

 
Statistical software packages perform the matrix inversion numerically to compute 𝛉𝛉�. 
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